91视频国产尤物,亚洲中文字幕 欧美高清,久久资源色鬼久久,亚洲午夜久久久久久91

  • <pre id="jcxdi"><small id="jcxdi"></small></pre>

    <object id="jcxdi"><small id="jcxdi"></small></object>
    <ul id="jcxdi"></ul>


    當(dāng)前位置:希尼爾首頁(yè) > 譯海拾貝 > 譯文欣賞 >北電力大學(xué)教師學(xué)期授課計(jì)劃Teacher’s Semester Teaching Plan of Northeast Dianli University

     

                            東北電力大學(xué)教師學(xué)期授課計(jì)劃

    Teacher’s Semester Teaching Plan of Northeast Dianli University

    原創(chuàng)文章:青島希尼爾翻譯公司 http://theheretical.com

    2014-11-17

    (非涉密內(nèi)容)

     

    Course Name

     

    Teacher

     

    Teaching Class

     

    Textbook

     

    Author

     

    Press

    China Renmin University Press

    Reference Book

     

    Teaching Method

    □blackboard writing      □multimedia    ■combination of these two methods

    Total Credit Hours

    39 Credit Hours

    Teaching Hours

    39 Credit Hours

    Experiment Credit Hours

    Credit Hour

    Computer Credit Hour

    Credit Hour

    Outdoor Sketch

    Credit Hour

    Investigation and Research

    Credit Hour

    Homework Times

     

    Check Times

     

    Tutorial Answering

     

    Check Type

    ■exam      □check

    Exam Form

    ■closed test      □open test      □half-open test     □oral test       □others

     

    Notes: 1. The semester teaching plan is filled by the teacher and takes into effect after the college or department principal affirms it.

    2. The semester teaching plan is in triplicate and submitted to the college or department for archives respectively. The teacher keeps one copy. The original is collected by the teaching secretary in unity two weeks before the semester begins. The collection sheet is submitted to the Division of Teaching Affairs with seal.

    3. To stabilize the teaching order, this plan cannot be changed in principle after it becomes effective. If it needs to be changed, please go through relevant adjusting procedures according to the procedure.

     

     

    Signature of the Teacher:                              **d**m**y  

     

    Signature of College (Department) Principal:              **d**m**y

     

     

    課程名稱(chēng)

     

    任課教師

     

    授課班級(jí)

     

    使用教材

     

       

     

    出 版 社

    人民大學(xué)出版社

    參考教材

    高等數(shù)學(xué)同濟(jì)大學(xué)數(shù)學(xué)系主編

    教學(xué)手段

    □板書(shū)      □多媒體    ■兩者結(jié)合

    總學(xué)時(shí)數(shù)

    39學(xué)時(shí)

    講授學(xué)時(shí)

    39學(xué)時(shí)

    實(shí)驗(yàn)學(xué)時(shí)

    學(xué)時(shí)

    上機(jī)學(xué)時(shí)

    學(xué)時(shí)

    室外寫(xiě)生

    學(xué)時(shí)

    采風(fēng)調(diào)研

    學(xué)時(shí)

    作業(yè)次數(shù)

     

    批改次數(shù)

     

    輔導(dǎo)答疑

     

    考核類(lèi)型

    ■考試      □考查

    考試形式

    ■閉卷      □開(kāi)卷      □半開(kāi)卷      □口試       □其他

     

    說(shuō)明:1.學(xué)期授課計(jì)劃由任課教師本人填寫(xiě),并由院(系)負(fù)責(zé)人審核無(wú)誤后,簽字生效。

    2.學(xué)期授課計(jì)劃一式三份,分別交院(系)存檔備查,任課教師留存,原件由教學(xué)干事于開(kāi)學(xué)初前2周內(nèi)統(tǒng)一匯總,并在匯總表上蓋章后上交教務(wù)處。

    3.為穩(wěn)定教學(xué)秩序,本計(jì)劃生效后原則上不得變動(dòng),如確需變動(dòng),請(qǐng)按程序辦理相關(guān)調(diào)整手續(xù)。

     

     

     

     任 課 教 師 簽 字:                                      

     

     

     

    院(系)負(fù)責(zé)人簽字:                                    


    Class Hour Arrangement

    Teaching Week

    Class Times

    Teaching Contentsincluding chapter contents

    Teaching Method

    7

    1

    Chapter 1

    1.1 Function  1.2 Elementary Function 1.3 Common Economic Function

    Combination of blackboard writing and multimedia

    8

    2

     

    1.4 Sequence Limit   1.5 Function Limit

     

     

    3

     

    1.6 Infinity and Infinitesimal

     

    1.7 Limit Algorithm

    9

    4

     

    1.8 Limit Principle and Two Important Limits

     

    1.9 Infinitesimal Comparison

    10

    5

     

    1.10 Functional Continuity and Discontinuity

     

    1.11 Operation and Property of Continuous Function

    6

    Exercise Class

    Summarize briefly and explain typical exercises

    11

    7

     

    Chapter 2

    2.1 Derivative Definition  2.2Derivative Derivation Principle

    12

    8

     

    2.3 Higher Order Derivative

     

    2.4 Implicit Functional Derivative

    9

     

    2.5 Functional Differential

    13

    10

    Exercise Class

    Summarize briefly and explain typical exercises

    14

    11

    Chapter 3

    3.1 Mean Value Theorem

     

    3.2  L’Hospital Principle

    12

     

    3.4 Functional Monotonicity and Curve Convexity & Concavity

     

    3.5 Functional Extremum and Maximum & Minimum

    15

    13

     

    3.7 Derivative Application to Economics

    Exercise Class

    Summarize briefly and explain typical exercises

    16

    14

    Chapter 4

    4.1 Definition and Property of Indefinite Integral

     

    4.2 Integral by Substitution

    15

     

    4.3 Integral by Parts

    17

    16

    Chapter 5

    5.1 Definition of Definite Integral 5.2 Property of Definite Integral

    18

    17

     

    5.3 Basic Formulas of Calculus

     

    5.4 Integration by substitution and parts of Definite Integral

    18

    Exercise Class

    Summarize briefly and explain typical exercises


     課時(shí)安排

    教學(xué)周

    課次

    教學(xué)內(nèi)容(包括章、節(jié)內(nèi)容)

    教學(xué)手段

    7

    1

    第一章

    1.1 函數(shù)  1.2 初等函數(shù) 1.3 常用經(jīng)濟(jì)函數(shù)

    板書(shū)

    多媒體

    結(jié)合

    8

    2

     

    1.4 數(shù)列的極限   1.5 函數(shù)的極限

     

     

    3

     

    1.6 無(wú)窮大量與無(wú)窮小量

     

    1.7 極限的運(yùn)算法則

    9

    4

     

    1.8 極限存在的準(zhǔn)則與兩個(gè)重要極限

     

    1.9 無(wú)窮小的比較

    10

    5

     

    1.10 函數(shù)的連續(xù)與間斷

     

    1.11 連續(xù)函數(shù)的運(yùn)算與性質(zhì)

    6

    習(xí)題課

    內(nèi)容小結(jié)  講解典型習(xí)題

    11

    7

     

    第二章

    2.1 導(dǎo)數(shù)概念  2.2 導(dǎo)數(shù)的求導(dǎo)法則

    12

    8

     

    2.3 高階導(dǎo)數(shù)

     

    2.4 隱函數(shù)的導(dǎo)數(shù)

    9

     

    2.5 函數(shù)的微分

    13

    10

    習(xí)題課

    內(nèi)容小結(jié)  講解典型習(xí)題

    14

    11

    第三章

    3.1 中值定理

     

    3.2 洛必達(dá)法則

    12

     

    3.4函數(shù)的單調(diào)性與曲線(xiàn)的凸凹性

     

    3.5 函數(shù)的極值與最值

    15

    13

     

    3.7 導(dǎo)數(shù)在經(jīng)濟(jì)學(xué)中的應(yīng)用

    習(xí)題課

    內(nèi)容小結(jié)  講解典型習(xí)題

    16

    14

    第四章

    4.1不定積分的概念與性質(zhì)

     

    4.2 換元積分

    15

     

    4.3 分部積分

    17

    16

    第五章

    5.1 定積分的概念5.2 定積分的性質(zhì)

    18

    17

     

    5.3 微積分基本公式

     

    5.4 定積分的換元積分法與分部積分法

    18

    習(xí)題課

    內(nèi)容小結(jié)  講解典型習(xí)題

     

    文章內(nèi)容由青島希尼爾翻譯公司翻譯

    中英對(duì)照 中英雙語(yǔ)翻譯 專(zhuān)業(yè)翻